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This Communication no 73-1 of the Government Institute for Water 

Supply comprises the 1uthor's contribution to the Salt-Water 

Intrusion Meeting, held at Copenhagen,. from 6-9 June 1972. 

As the subject of that paper was not exclusively concerned 

with fresh-salt water problems but had a much wider scope, 

dealing with general methods in obtaining analytical solutions 

for more di~ensional steady and unsteady groundwater problems, 

it was thought useful to give it a somewhat wider propagation 

by publishing it as a Communication of the Institute, with a 

slightly modified title. 

MATHEMATICAL ANALYSIS OF STEADY AND NON-STEADY TWO- AND THREE­

DIMENSIONAL FLOW IN ANISOTROPIC AQUIFERS WITH SPECIAL REFERENCE 

TO SALT WATER INTRUSION PROBLEMS. 

1. Introduction 

In this paJS' not so much stress will be laid upon salt water 

intrusion problems as well upon. several methods to obtain 

analytical solutions of ground water flow problems in general, 

which however, will be of particular interest for the analytical 

approach of salt water intrusion problems. 

These problems· always arise from changes in the existing ground­

water flow system, mostly caused by human activities, like 

abntraction of groundwater by means of pumping wells, digging 

building pits, land reclamation, etc. 

For instance, if the shape of an upconing salt-fresh water 

interfac~ caused by a groundwater withdrawal must be predicted 

to a certain degree of exactness, a good knowledge of the 

stream- and pd~ential lines governing the flow problem is 

necessary, whether phenomena like dispersion, or the difference 

in density between fresh and salt or brackish water are ignored 

or not. If dispersion is taken into account at first the 

groundwater velocity components must be determined as fu:-~tions 
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of place and sometiroei of time before they are introduced in the 

differential equation that governs the dispersion phenomenon. 

If both the dispersion and the difference in density are neglec­

ted (the brackish groundwater flow thus considered as an ideal 

immiscible two-liquid floH) the assumed sharp interface between 

fresh and brackish water must be .determined as a function of time 

and position. In all cases however at first a solution of the 

groundwater flow apart is required. Thus an important rule is: 

The basis of dealing with salt 1r1ater intrusion problems is a 

good knowledge of the methods for solution of groundwater flow 

problems in general. 

This seems to be self-evident. Nevertheless it must be stated 

that many geohydrologists are quite unfamiliar with the 

mathematical approach of groundwater problems with more than one 

dimension. 

Indeed, most problems concerning groundwater flow are dealt 

with in a one-dimensional way; that means that only horizontal 

flow in the aquifer towards wells,drains, canals, reservoirs 

etc. is considered and if possible (and evGn if i-~ ·._s :bnpossible) 

they are treated as stationary problems. 

This is in a way understandable, because, if the problem is 

treated one-dimensionally and stationary it is governed by 

a one-dimensional or ordinary differential equation, which in 

most cases can be solved easily and in fact in many geohydrological 

problems, when a steady state presents it self and where for 

instance the magnitude of the seepage through a dam or the dis­

charge of a series of pumping wells are the unknowns to be 

solved, the neglection of the vertical flow is acceptable. 

Even in problems of partial penetrating wells, canals etc., diffi­

culties can be avoided by application of the rule that at a dis-

tance o~ {i('v 
~ 1,5 nv~ the effect of the partial penetration will have vanished, 

in which D = thickness of the aquifer and K and K are the coeffcients 
V h 

of vertical and horizontal permeability respectively. 



However, as soon as grotndwater flow co~ptit~tt6na must be per­

formed in order to get ~ better insight into the attracting and 

especially into the raising of deeper groundwater with a higher 

Cl-content, either the vertical conponents of the groundwater 

velocity must be taken into account, when dealing with one 

aquifer, or, in case of more aquifers separated by semipermeable 

layers, the problem must be treated as a more-layer system with 

horizontal flow in the aquifers and vertical flo,., through the 

semi-permeable layers. 

salt 

Thus one arrives at a second basic rule: 

Salt \oJater intrusion problems in groundwater flow can only be 

treated adeguately by means of two- or threedimensional analysis 

with even an extra dimension, the time, in non-steady cases. 

The main consequence of this rule is that, if exact solutions are 

wanted,methods must be available to solve partial differential 

equations, or in the case of more-layer systems, to solve 

simultaneous differential equations. 

Of course in most cases numerical solutions can be found or a 

solution by means of an analo ;o:1 ~tnd in fc4ct for complicated 

problems only these last two devices may lead to an acceptable 

result, but exact solutions if they, at least,can be obtained 

in such a way that they are fit for practical use, are always 

preferable. 

A second consequence of the given rule is that if vertical flow 

presents itself, also the phenor.1enon anisotropy may play a role. 

Anisotropy of the underground means that unlike isotropic ground, 

the permeability coefficient of the ground varies with the 

direction,in a homogeneous anisotropic aquifer this variation 

being the same in every point of the aquifer. 



In practice, anisotropy occu~·r3 more frequently than isotropyJ 

especially the difference in vertical and horizontal permeabili­

ty in sediments plays an important role. This difference can be 

considerable and a horizontal permeability of over 50 times 

the vertical,permeability is not ur~sual. For this reason 

the following rule holds: 

~ :re4ard to sedimental layers with salt water intrusion 

problems the anisotropy of the ~~derground always should be taken 

into account. 

If aniaotropy is neglected and the horizontal permeability is 

chosen to represent the whole aquifer, the results of the cal­

culation of for instance an upconing of a salt water body will 

be too unfavourable, as the calculated vertical groundwater 

velocities will turn out to be too high in comparison with the 

real velocities. 

In analytical computations the anisotropy does not cause much 

trouble as far as the directions of the main permeabilities 

co~ncide with the directions of the coordinate axes, as in most 

problems will be the case. Then by means of a skilful 

substitution the difference in the permeabilities can be 

eliminated in the differential equation without affecting its 

character. 

For example, consider the differential equation for two-dimensional 

non-steady flow: 

Divide by Kh and put 
K 

V 

~= 

2 2 s 
.2...£ . a2 .2.J£. = s 2£_ 

2 T 2 K . dt 
ox dz h 

Substitute z = az1, 

.2 1 d2 
then 2....S:.- - ~ 2 - 2 2 

dz a dz
1 

and the differential equation becomes~ 



e.nd this is again the "1ormal" differential equation for iso­

tropic ground with one permeability (the horizontal one) for 

all directions: the grc··nd\vater body l1as been extracted figura­

tively in the z-direction \'lith a factor ~ (> 1 if K < Kh) 
c, V 

In this connection it must be pointed out that in anisotropic 

ground the stream- and aequipotential lines are £2l perpendicular 

to each other (except at points where a streamline has the 

direction of one of the main permeabilities). 

By means of special non-steady pumping tests \vi th partial 

penetrating pumping wells and observation ,.,ells at several depths, 

the values o. the horizontal as well as of the vertical permea­

bility may be determined. A method for this determination has 

been worked out at o1.1r Institute and has been applied with succes. 

2. Rifferential equations and calculation technigues. 

The general differential equation for three-dimensional non­

steady groundwate:r flow in the sr!t.u:rated zone in homogeneous, 

isotropic ground, runs as follows: 

2 2 2 s 
d (;) , .2....£ d r~ , ( ) s £S;. -2 -r . 2 + dz2 -r F x, y, z1 t = K dt 
dx cy 

in which 

x,y,z 

the potentie,l head of the groundwater 

place vc:.riables 

t 

s 
s 

time variable 

specific storage coefficient 

F ( x, y, z, t )= a function tr~at d.enoto~ the way in which water is genern.ted 
or abstract•Yi into or from the groundwater body under 
ccneidcrationo 

In dealing v~. th steady floH the term with * and trd thout in-

jection or r:bstracti<"m also the term F can be deleted. In that 

case the ~ifle~cntial equation for steady flow through homogeneous 

isotropic ground reduces to the three-dimensional differential 

equatio~ of ~&~lace: 

2 
d t:;'· ----I 
dx 

2 . 

http:abstract.yl
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If there is axial symme:ry, the use of cylinder coordinates is 

obvious; the differential equation then becomes: 

2 2 
~+l.2P..+£....s£.= 0 
dr2 r dr dz2 

The greater number of salt water intrusion problems will be 

governed by the two following differential equations and in this 

paper we shall restrict ourselves to these: 

2 2 s 
1 e 2...2 + ~ = ~ ~ (two-dimensional flow) 

dx2 dz2 K dt 

.2 2 s 
£...!£. + l .2£ + 2-£. = 2 22. (three dimer.t~ional axial symmetric flov!) 
dr2 r dr dr;2 K dt 

and to the analogue equations for steady flow (without %t ). 
All here mentioned equations are partial differential equations 

and the main problem with them is that unlike ordinary differ~n­

tial equations a general solution with some constants cannot 

be found. A partial differential equation has to be solved to­

gether with the initial- and boundary values. This may be the 

reason that many geohydrologists do not know to deal with the~~ 

However, there are adequate methods to solve partial differential 

equations and some of them will be the subject of this paper. 

a. Conformal mapping 

In the first place the very elegant method of conformal mapping 

must be mentioned. This method may be used if the problem is a 

so-called potential flow problem, governed by the differential 

equation: 

2 2 
s!....£.+~=0 
dx2 dz 2 

or 
2 2 

E....c£. .2...t 2 + 2 = 0 
dx dy 

the last one not being of interest for upconing problems (only 

horizontal flow in two directions). 

In many handbooks on hydrology this method is treated and for 

the time being it will suffice to refer to these books (for a 

~horough treatment the "Theory of Groundwater Movement" by 
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Mrs. Polibarinova-Koct.ina can be recommended) and to draw attention 

to the fact that almoLt every potential flow problem in homo­

geneous confined aquifers with a constant thickness and straight 

boundaries and also a number of problems concerning phreatic 

water or a salt-fresh water interface can be solved exactly by 

means of this complex plane method and especially the Schwarz­

Christoffel and hodograph version of it. 

b. Integral transformations 

A disadvantage of the method of conformal mapping is that only 

steady two-dimensional problems can be solved and as soon as 

time or a third dimension or seepage through a semi-permeable 

layer present themselves the method cannot be used and other 

methods have to be applied. Among them the integral transfor­

mation methods are very powerful tools for obtaining exact 

solutions, but they are surprisingly little known or at least 

scarcely applied in geohydrologyo 

The integral transformation techniques are based on the f~ct, that 

by means of a skilful substitution in integral form one of 

the dimensions of the differential equation can be eliminated 

and by continuing this procedure the partial differential 

equntion can be reduced to an ordinary differential equation 

or even to a common algebraic equation, which usually will not 

yield any difficulties for their solution with help of the 

likewise transformed boundary values. 

The in this way obtained solution must undergo n reverse or .so2c 

reverse transformations in order to obtain the desired solution 

of the problem. 

b.~. Laplace transformation 

The Lnplace transformation generally is used to eliminate the 

time variable; so it is most freguently applied to non-steady 

problems. The following example will show us the procedure. 
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Consider a confined aq d.f\.::r o thick.neso .D, infinitely extended 

in y-direction and semi-infinitely in x-direction (o < x < oo) 

while the aquifer at x=o st~nds in open connection with an infinite, 

fully penetrating canal. 

By means of a sudden lovJering of the cnnal level, which further 

is kept con:~t .. nt c" drawdO\.;n o the piezometric head, dependant 

of time nnd place, is introduceu. The initial drawdown is assumed 

to be zero. 

The problem is non-steady geogr~phically one-dimensional 

(only x-coordinate). 

• f .... 

. . . . '~ 

t • • "' I ' t ('"""' • • • I··' D . : .. Kl,::, ' . , 

1·:: . ~ ... ·: :. : .: · ... : . . . 
'T'T'T' !1........,77...,..,...777T'"'I"T7n....-nnf-rt77 ~rrmii7777771Trrrm77 

The drawdown must be determint:!d 

Rs a function of x and t~ 

c.p = cp ( X, t ) • 

'rhe 'boundary value problem becomes" 

2 £...£ s dcp 

dx 
2 KD dt 

y(x,o)=o , Q(o,t)=H , ~ (~,t)=o 

in Hhich K and S represent dE• permeability- and the storage coefficilint 

of tl~e aquifer respectivily. 
-st 

Nov.! tr.e unknown function y (x,t) is multiplied by the factor e and 

integrated with rcE;pcct to t from zero to infinity, thus obtaining c. 

new function, indcpcndant of t~ 

L ~ ( x, t); 
l .) 

~ 

(~ 

l -st 
\ e • i:J(x,t 
) 

...1 
0 

9(x,s) (s an arbitrary positive value) 

This operation on tho func"Lion y(x, t) is crtlled the I.c-1pl2.cc transform­

ation of r;; ( x, t) and the nm·J fu.nctioG is called the Laplacc transform, 

which will usually. be indicc,te:d by L ( Q l or by rno8Jls of a bc..r ~ 
L j 

; (x,s) or shortly 9• 

The same operation app.lying to tho differential equation, gives: 
t"><J 

( ( -st) j lfJ d () 
0 

scp - cp(x,o) 
00 

cJ
2 

( -st 't _ d~ 
~ 1 Qe a - 2 
dx Jo dx 

http:Ii8,p12.cc


The transformed different~nl eqLlation becomes: 

and as ~(x,o) = o (initial value)~ 

-vJith ~2 = s 
Kn 

This differential equation is an ordinary one, with only one 

variable x and the device oi the tranoformntion is obvious: 
2.£ to eliminate the differentio.l quotient and. to reduce it to dt 

the transformed function cp • A further advantage of the transfor-

mation is that the init value at the same time is incorporated. 

Now the two remaining boundary values still have to be 

transformed: 

~~ - !i 6-St ]DO = .li 
8 0 s 

( H, e-stdt 
~o 

o and~ (o,s) 

Tlte transformed boundary value problem thus becomes: 

~ 
s J 

r ~2~ - ~ 2 
sr,i = 0 I OX 

v1ifh thf: transforned solution: ·~i(x, s) 

y (o,s) 

H 
e s 

From tables of Laplnce transforms the reverse transform can be 

found as: 

cp ( x, t) .d orfc ( ~) = H erfc ( 2.S v~ ~~1) and this is the desired exact 
"'.:t 2 . KL 1 
L 1/ 

solution, in Hhich erfc(z) complernent:.:.u'y error function = 

('-'A 2 j e d\ nnd indeed, the 1 - crf(z) 1 - transform of 

""Chis solution~ 
0 

(.><) 

H (e-st erfc (~) dt 
Jo 2Vt 

can be evaluated to 
H 

0 
8 

.AnP;:lot;.:-· l'Jroblems with v::ry1ng water t8-ble in tho c::::.nal .::nd even 

variation according to an a.r'oitrary function of the time 1~1 ( t) c: "n 

be solved easily by means of ~he a.ce 'transform:'ttion tcchniquc:o 

Besides this, numerous other oxam;,Jles coulll. 1w.v(: been t:,iven, but from 

this simple cxnmple the importance of the ace trc~nsforrn.;<,t:i.on 

method for solution of non-stec::tdy problems will have become cle:1ro 
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b.2.Hankel transformations 

The Hankel transformations can be divided into finite and 

infinite Hankel transformations. Both transformations arc 

applied to axial symmetric problems, that is in all problems where 

the independant variable r plays a role. 

By the infinite Hankel transformation the operation is understood 

in which the unknown function ~ (r) is multiplied by the factor 

r J (ar) and the product is integrated with respect to r from 
0 

zero to infinity, thus obtaining a new function, denoted as 
~ ) A 

H {'_ cp(r ); or as cp(a), indcpendant of r~ 
1>0 

$(a)=J[r ~(r) Jo c~r) dr 
0 

in which J (ar) is the Besselfunction of the first kind and of zero 
0 

order and a h~s an arbitrary positive value. 

( ) 
1 -er For instance the transform of f r = r e becomes~ 

00 

/f(a) = 5-r1 e-cr. r J (ar)dr =Se-er J (ar)dr = ---
o 

0 
0 ° /~2+;2· 

(Laple1ce integral) 

The main property from which the infinite Hankel transform0tion 

derives its v;-J.lue for solving axial symmetric problems is, that it 

reduces the terms 

d
2
y + _1 de! 

~ which always occur in the differential equations of those 
dr2 r dr' 

problems, to the transformed function itself, as can be shown as 

follows 

('>() 

( d2, 1 'r 
1 

( ~ + - £:£.) r J ( ar )dr J dr2 r dr o 
0 . 

(! 1. .si. ( 9:£ 1j 
: .rdJ;:' rdr 

...., 0 l 

(X) 

r J (a.r)dr 
0 

IXl 

J
0 

( a.r) r S2.dr~ , - J( r s!£ d Is ( ~r )\ 
dr l. o '.J 

0 



J 
1 

( \li' ) d cp 

!Xl { ) 

- <1 ( <p d ~ r J 1 ( <1r) ~ 
Jo ',. ,; 

rlcp 2 fC>() 
r J

0
(ar) tr:' + ar J 1(ar) cp- a. .. 9 r J

0
(ar) dr = 

\X) r .s!£ -~ 2 1\ 

1 r J 
0 

( ar) dr + a.r J 1 ( ar) cp 1 - a cp (a), 
J 0 

0 

in which J 1 (ar)=B8sselfunction 
of tho first kind and first 
order. 

So, if the function cp(r) satisfies the condition that both cp and ~ 
v~nishcs for r = oo, we obtain~ 

,· 2 'I 
)' d c;; + _1 dm {\ _ dr~, 2 ,.., 

H ~ - 1 i m ( r .::.J;:.dr ) - a cp (a ) 
'\ d 2 r dr r-
1 r ..~ r_,o 
\. 

~~~Lapr!!~ati£~_£f_!~~!~!l~l!~g~nkel !~~~££~ati~~-!~po~~ible 

~~-~E-~xi~!_s~~etri~_EEob!~~!~E_whicE th~ho~!~Eta!_~~££itl_~! 

~~~-is_~iv~E~E~-~he P~!ent!~~~wdo~_£!_~~~~~E~nd !~~gr~nd: 

~!~-~l~city_at infi~!!l_~~~~~-~~~£~-~£~ 

From the theory of Bessel functions it is known that an c:.rbitrary 

function f(r) under certain conditions can be represented by the 

Hankelintegral, as follows~ 

!Xl 

f ( r ) = r a A ( a ) J ( ra ) da 
'"o o 

in which 

A( a) f(r) J (ar) d.r 
0 

A. 

As A( a) is the Hankel transform of f( r) or A( a) = f( a) the invors'~ 

Hankel transformation turns out to be very simple 

DO 

cp ( r ) = ( a ~ (a ) J ( ra ) da • Jo o 
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As an example consider infiltration with a constant velocity q from a 

circul~r pond into an assumed infinitely thick aquifer, which will 

yield a steady curved phreettic surface. 

G
l 
I 

R 
I 

I I 
I I 
I , I 

For simplificc~tion thG water table aquifer may be approximated to a 

confined aquifer in such R way that the original horizont~l water table 

coincides with the bottom of the irr.pcrmeable lG,yer tht"d covers the 

aquifer, while water supply takes place at the rate q per unit time per 

unit area over a circular disc. The boundary conditions of the curved 

unknovrn phren-tic surface ar:::: thus reduc-ed to boundary conditions in a 

fixed pl~ne. Now the elevation ~ of the original pie~ometric head has 

to be determined as ~.l function of rand z~ cv = cp(r,z). 

< ~ I ' • l • • 

' ... : ..... : .:'_·. <: ~. ·.· .. : .... 
. . . 

• • • • • .. • • • • ~. • • : •• f • •• : • 

. . . 
' ....... " .. . ·.: .. 

• • f • ~ • z· .. .' ..... . . ....... . 
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The boundary value problem can be translated mathe~~tically as 

follows~ 

l 
· drtl 

9 ( C<)' z) = 0 ir' ( o, z) = 0 

l 
:_ 

%; (r,o) - ~ for o < r < R 

o for r > R 

Hankel trcnsformation with respect to r of the discontinuous bound2~y 

condition for z = o yieldsg 

d"" Tz (a,o) 

00 

r £Le£. ( ) = j dz r,o r J
0
(ar) dr = 

R 

- ~ \ r J (ar) dr = K..J o 
0 0 

gli J (aR) whereupon tho transformed boundary value problem becomes; Ka 1 

2-. 
d v 2"' 
dz2 - a cp = o 

L 

ci_ (a,o) = 
dz - .9:li J (aR) Ka 1 

The solution of this ordinary differential equntion isg 

~ (a,z) = aR2 J1 (aR)e-az 
Ka 

Inverse infinite Hankcl transformation gives the desired solution~ 
0<) 

( 

~(r,z) = £li I l J (Ra) J (ra)e-za da. 
'1' K !a 1' c 

-'O 

which expression can be evaluated in infinite series and thus 

c:-1.lculated for every value of r and z. Along the coordinate 

axes the integral function reduces to transcendental functions, 
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for example along the z-axG ~. 

O<l 

cp( ')' z) = g!i ( 1 J (Ra )c -za; da. == Sl (' /R2 + z2'- z) 
K I a 1 K vj 

,) 
0 

and along the r-as: 

eo 

R r 1 
Q(r,o) = ~ ! - J (Ra) J (ra) da 

K J a 1 o 
0 

2 
= Zar E (!...) for r < R 

nK R2 

(Laplace integral) 

(\veber-Schafthei tlin integral) 

and 

for R > r 

in which K(z) nnd E(z) represent complete elliptic integr~ls of the 

first and second kinds respectivelyv 

From the theory of Bessel functions it is kno\m th::1.t under cert::.in 

conditions o..n arbitrary function can be represented by n so called 

Fourier-Bcssel series~ 

f(x) = ) 

;;T 

wit[t c == 
n 

a x 
0 J (....!L ) 

n o a 

0., 

2 ,r a X 
( ) (-n ) \ xf \. x J 0 o. dx 

.. )o 

n.nd in which a (n=1,2 ••• ) arc the roots of the equc.tion J (a) o n o 

http:cert::.in
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Now we can consider the integral in this expression as nn operc.tion 

performed on the function r(x) and we call this operation the finite 

Hankel transformationgfor instance~ 

Then we immediately cnn dotormine the inverse transform~ 

and so~ 

a r 
(Yl J (...E...) 

2 \ o R 
cp(r) "' (n) 

=7 L 
cp 

2 . 
31 (an) 

n=1 

Like the infinite H~nkol transformation, the finite transform~tion 

also reduces the terms 

to the transformed function itself as follm,m~ 

r / 2 
H l.1.2+1~­
nld2 ;d.rj l r 

2 
a 

a J
1

(a ) ~(R)- lim (~dd,)- _£_ 9 (n) 
n n r 2 r-,o R 

Hence, applicati~~-~!_!~~-[~~~tc_Ha~~~-~r~!~E~~!ion is_~~ful 

in~~i;·~!_~~~!Eic_EE~£le~_wit~_Hiv~~~or~~nt~~-velocity~!_E_~~ 

~~-~~~e~E~!~in~~~~!riEut~~~-~!-~ fixed_~is!~~~-fr~~-th~~~nt~ 

For example, calc~1late the unsteC1dy drawdown distribution Cllused by 

abstracting a discharge Q from a fully penetrating well at the 

centre of a circ-u.lar island. The aquifer is assumed to be confined. 
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rp = cp(r,t) 

L 

2 
~ + .l ~ = ~2 ~ 
dr2 r dr dt 

qJ(r,o) = o cp(R,t) = o 

lim 
r---;)o 

(r ~) = - _il_ for t > o dr 21tkD 

I 

Finite Hnnkel transformation withrespect to ~ gives~ 

~ (n, o) = o 

an ordinary differential equation with solutiong 

R2 { an2t J) 
v(n,t) = ~kD • - 2 ~ 1 - cxp (- 22") • 

a I f3 R n \. 



The reverae Hnnkel transformation yields immediately~ 

C>.J 

<;>(r,t)=n~ L 
n=1 

a. r 

As\ 
L 

J ( .1:L.) 
o R 

n=1 

we get: 

a r 
J (...!L ) 

o R 

is the Fourier-Bessel representation on the 

interval a ~ r $ R of the functiong 1 ln li 
2 r 

a R Q 
~(r t) = ~ ln-- ~ 

' 2nkD r nkD 

If t tends to infinity the series vanishes and the 'VIell known solution 

for thG steady state is obtained~ 

( ) 
Q n 

9 r = 2nKD ln r 0 
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b.3. Fourier transformutions 

The Fourier transformations can be divided into 

1e infinite sine transform~tion 

2e infinite cosine transformation 

3e finite sine transformation 

4e finite cosine transformation 

These transformations are useful in solving problems v1hich are 

not axial symmetric as they all eliminate the second differential 
2 2 quotient of a variable f, i. d c:J sL£. 2 or 2 • 

dx dz 

The operations necessary for these transformations are similar 

to those of the Hankcl transforms and it will suffice to refer 

to the survey of integral trnnsfornations at the end of this 

paper. 

In the preceding only a few examples of exact solutions for 

two or three-dimensional steady or non-steady problems have 

been given, but there are nuoerous problems that can be solved 

by means of integral transformation methods. However, most of 

them are not mentioned in geohydrological literature. 

This is amazing, especially if one realizes that in a branch 

of science where problems are very similar to those in geohydro­

logy, namely the conduction of heat in solids, multiple solutions 

for the most different problems arc being given. 

May be the reason for this must be found in a lack of the 

mathematical instruments which geohydrologists havo at their 

disposal? 

If such is the case, this paper may form a small contribution 

to a better understanding of the possibilities of solving oore 

complicate groundwater problems analyticallyo 
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Tro.nsformc:tion Main property 

L {q>(t) J'" ~(a) c.. by means of 
operations ~d from 
tabels r 

b. by integration in 

1 

---- i 
I S (q>(x)\. = 9(n) Sn J i~ ) = 

__ _:

1

e :~:lex ::~l 
S -

1 
l. ~(n) ~ = cp(x) 

1
1 

nt j 1
1. dx _{ 

A. F"lni to C>.J 

I
! f ( ) · n7tX d· nrt )

2
'·' n7t ( ( ) ( )n ( )l 2 } "-' . n7tX = I <p X Sln a .£. -(7 ({) +-) cp 0 - -1 cp 0. { • cL cp (n)sln c:-

1 Jo ----;--------+-~7~T-;-~-~---------~-+----~;_1_-~------
I C J '' ( x) l = ;p ( n) C ) q ( = c -1 J ~( n) ~ = q> ( x) = 
I n l J n t_ dx J n l .J 

I 

~0 I 
/!" 2 d d 1 ""'( · 2 \ · .. J nnx ! = j cp(xlcos n:x m: -<7l ~ + (-1 l d}<a.l- ~ol o: '~' o )+ a L q> cos a 

I~· rnf-ini~e! :-f:-(x~J-= ·~-(a.-) - ~J i~-~-~- ------- s=~ { Q(~~ ;:
1

'~':--l 
; 1 • s1ne 1 l dx J 

I - I ,':;' - a2 \) + acp(o) 2 (~·.:(n) 
j I \ q>(x)ccin(ax)dx fwith si£. ~ ;;- ~ ~ sin (=)da I 

~ -+1: ~--------- 'i'c( :,:~;~1~~~~~--------- :: _________ ~ 
I 2. COsine c J <p (X) I = ';p (a) = .. c-1 f r"\ ( )l = . ( ) I 

'l J } 2 I aj ~n i 

I .dx J .,_ j 

I Ic<:J I - a 2 $ - ~( o) 2 ;~ . I 
1 '+l(x)cos(ax)dx >·Iith si£. I i \ 'l'(a)cos(xa)da I 
L 0 ____ j_~~=~-~-~~~{ ~~-=-~---_j_ ___ : ______ __j 

Pourier 

I . sine -

n J 
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r~ a r 
I , ) (·nR)dr i rcp\r J o 
i 

"'O 

with a the roots of 
n 

J (a) ;:: o 
0 

-· ~~() -

a J
1
(a )cp(R)- lim r ~dd 

n n '" r 

2 
a 

- n2 ~(n) 
R 

r~o 
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B. Infinite 
I J 

H ~ cp( r) '. = ~ (a) 
l J 

1
. dm 2 

- 1m r -. - a cp dr r-)o 

with 

H-
1 

{ jp ( a ) } = rp ( r ) 

/'J 

= t a ~ J 
0 

(ra )dcx 

cp (oo) = * (oo) = 0 
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