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This Communication no 73-~1 of the Government Institute for Water ~
Supply comprises the author's contribution to the Salt-Water
Intrusion Meeting, held at Copenhagen,. from 6-9 June 1972.

As the subject of that paper was not exclusivély concerned
with fresh-salt water problems but had a much wider scope,
dealing with general methods in obtaining analytical solutions
for more dimensional steady and unsteady groundwater problems,
it was thought useful to give it a somewhat wider propagation
by publishing it as a Communication of the Institute, with a
slightly modified title.

MATHEMATICAL ANALYSIS OF STEADY AND NON-STEADY TWO- AND THREE-
DIMENSIONAL FLOW IN ANISOTROPIC AQUIFERS WITH SPECIAL REFERENCE
TO SALT WATER INTRUSION PROBLEMS.

Introduction

In this paprnot so much stress will be laid upon salt water
intrusion problems as well upon several methods to obtain
analytical solutions of ground water flow problems in general,
which however, will be of particular interest for the analytical

approach of salt water intrusion problems.

These problems always arise from changes in the existing ground-
water flow system, mostly caused by human activities, like
abstraction of groundwater by means of pumping wells, digging

building pits, land reclamation, etc.

For instance, if the shape of an upconing salt-fresh water
interfacqg caused by a groundwater withdrawal must be predicted
to a certain degree of exactness, a good knowledge of the
stream- and péQéntial lines governing the flow problem is
necessary, whether phenomena like dispersion, or the difference
in density between fresh and salt or brackish water are ignored
or not. If dispersion is taken into account at first the

groundwater velocity components must be determined as furztions



of place and sometime: of time before they are introduced in the
differential equation that governs the dispersion phenomenon.

If both the dispersion and the difference in density are neglec-
ted (the brackish groundwater flow thus considered as an ideal
immiscible two—li@uid flow) the assumed sharp interface between
fresh and brackish water must be determined as a function of time
and poegition. In all cases however at first a solution of the

groundwater flow apart is required. Thus an important rule is:

The basis of dealing with salt water intrusion problems is a

good knowledge of the methods for solution of groundwater flow

problems in general.

This seems to be self-evident. Nevertheless it must be stated
that many geohydrologists are quite unfamiliar with the
mathematical approach of groundwater problems with more than one

dimension.

Indeed, most problems concerning groundwater flow are dealt
with in a one-dimensional way; that means that only horizontal
flow in the aquifer towards wells, drains, canals, reservoirs
etc. is considered and if possible (and even if i* s impossible)

they are treated as stationary problems.

This is in a way understandable, because, if the problem is
treated one-dimensionally and stationary it is governed by

a one~dimensional or ordinary differential equation, which in

most cases can be solved easily and in fact in many geohydrological
problems, when a steady state presents it self and where for
instance the magnitude of the seepage through a dam or the dis-
charge of a series of pumping wells are the unknowns to be

solved, the neglection of the vertical flow is acceptable.

Even in problems of partial penetrating wells, canals etc., diffi-
culties can be avoided by application of the rule that at a dis~

tance of

,K
~1,5D A the effect of the partial penetration will have vanished,

in which D = thickness of the aquifer and Kv and Kh are the coeffcients

of vertical and horizontal permeability respectively.
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However, as soon as grotndwater flow computiéiisns mnmust be‘per~
formed in order to get a better insight into the attracting and
especially into the raising of deeper groundwater with a higher
Cl-content, either the vertical comnponents of the groundwater
velocity must be taken into account, when dealing with one
aquifer, or, in case of more aquifers separated by semipermeable
layers, the problem must be treated as a more~layer system with
horizontal flow in the aquifers and vertical flow through the
(O>O
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semi-permeable layers.
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Thus one arrives at a second basic rule:

Salt water intrusion problems in groundwater flow can only be

treated adeguately by means of two- or threedimensional analysis

with even an extra dimension, the time, in non-steady cases.

The main consequence of this rule is that, if exact solutions are
wanted,methods must be available to solve partial differential
equations, or in the case of more-layer systems, to solve

simultaneous differential equations.

Of course in mosl cases numerical solutions can be found or a
solution by means of an analozon and in fact for complicated

problems only these last two devices may lead to an acceptable
result, but exact solutions if they, at least,can be obtained
in such a way that they are fit for practical use, are always

preferable.

A second consequence of the given rule is that if vertical flow
presents itself, also the phenonenon anisotropy may play a role.
Anisotropy of the underground means that unlike isotropic ground,
the permeability coefficient of the ground varies with the
direction,in a homogeneous anisotropic aguifer this variation

being the same in every point of the aquifer.



In practice, anisotropy cccurs wore frequently than isotropyj
especially the difference in vertical and horizontal permeabili-
ty in sediments plays an important role. This difference can be
considerable and a horizontal permeability of over 50 times

the vertical-permeability is not urmsual. [For this rdason

the following rule holds:

With repard to sedimental layers with salt water intrusion

probleme the anisotropy of the uaderground always should be taken

into account.

If anisotropy is neglected and the horizontal permegbility is
chosen to represent the whole aquifer, the results of the cal-
culation of for instance an upconing of a salt water body will
be too unfavourable, as the calculated vertical groundwater

velocities will turn out to be too high in comparison with the

real velocilties.

In analytical computations the anisotropy does not cause much
trouble as far as the directions of the main permeabilities
coincide with the directions of the coordinate axes, as in most
problems will be the case. Then by means of a skilful
substitution the difference in the permeabilities can be

eliminated in the differential equation without affecting its

character.

For example, consider the differential equation for two-dimensional

non-steady flow:
2 2

d ¢ d g dy
Kh dx2 v dzz g dt
Kv 2
Divide by Kh and put E; = a
d2‘ 2 2o 5w
S22 .2, Substitute z = az,,
2 2 K dt 1
ox dz h
dg‘ 1 02
then Sk = == =t
2 2 2
dz a dz

1
and the differential equation becomes:

2 2 S .
Jdo , 99 __85 &2
2 2 K, dt

ax dz1 h
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end this is again the '"1ormal" differential equation for iso-
tropic ground with one permeability (the horizontal one) for
all directions: the grc ndwater body has been extracted figura-

tively in the z-direction with a factor %-(> 14f K < Kh)

In this connection it must be pointed out that in anisotropic

ground the stream~ and aequipotential lines are not perpendicular

to each other (except at points where a streamline has the

direction of one of the main permeabilities).

By means of special non-steady pumping tests with partial
penetrating pumping wells and observation wells at several depths,
the values o. the horizontal as well as of the vertical permea-
bility may be determined. A method for this determination has

been worked out at our Institute and has been applied with succes.

Differential equations and calculation techniques.

The general differential equation for three-dimensional non-
steady groundwater flow in the scturated zone in homogeneous,
isotropic ground, runs as follows:

dgo dz“ 02“ 5
‘y L{; &

2T T2 T T
ax dy dz

+ F(x,y,2,t) = ; '5(']:'

in which

= the potentiel head of the groundwater

Xy ¥y 2 = place variables
+ = time variable
S = specific storage ccefficient

[l

F (%,¥,2,t)= a function that denotc. the way in which water is generated

or abstracted into or from the groundwater body under
coneideration. J
In dealing with steady flow the term with 3% and without in-

jection or abstractiecn also the term F can be deleted. In that
casze the diflferential equation for steady flow through homogeneous
isotropic ground reduces to the three-dimensional differential

squation of Lezmlace:

2 P2
e Al St vl =
5 5 5 =0
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If there is axial symme:ry, the use of cylinder coordinates is
obvious; the differential equation then becomes:
2
._i 1,99 _ g
2 T Or 2
dz
The greater number of salt water intrusion problems will be
governed by the two following differential equations and in this

paper we shall restrict ourselves to these:

e d2C 02 S
1 92,29 2R (two~dimensional flow)
2 2 K dt
dx dz
c dzg 1 9¢ 29 CSs ag
2 St ot yaT (three dimensional axial symmetric flow)

dz

Q.

&

and to the analogue equations for steady flow (without dw ).

ot

All here mentioned equations are partial differential equations
and the main problem with them is that unlike ordinary differen-
tial equations a general solution with some constants cannot

be found. A partial differential equation has to be solved to-
gether with the initial-~ and boundary values. This may be the
reason that many geohydrologists do not know to deal with then.
However, there are adequate methods to solve partial differential

equations and some of them will be the subject of this paper.

Conformal mapping

In the first place the very elegant method of conformal mapping
nmust be mentioned. This method may be used if the problem is a

so-called potential flow problem, governed by the differential

equation:
2 2 2 2

g2, 92 _g4 or 99,92 _ ¢
2 2 2 2 !
dx dz dx oy

the last one not being of interest for upconing problems (only

horizontal flow in two directions).

In many handbooks on hydrology this method is treated and for
the time being it will suffice to refer to these books (for a

snorough treatment the '"Theory of Groundwater Movement'" by



Mrs. Polibarinova~Koclr.ina can be recommended) and to draw attention
to the fact that almost every potential flow problem in homo-
geneous confined aguifers with a constant thickness and straight
boundaries and also a number of problems concerning phreatic

water or a salt-fresh water interface can be solved exactly by
means of this complex plane method and especially the Schwarz-

Christoffel and hodograph version of it.

Integral transformations

A disadvantage of the method of conformal mapping is that only
steady two-dimensiocnal problems can be solved and as soon as
time or a third dimension or seepage through a semi-permeable
layer present themselves the method cannot be used and other
methods have to be applied. Among them the integral transfor-
mation methods are very powerful tools for obtaining exact
solutions, but they are surprisingly 1little known or at least

scarcely applied in geohydrology.

The integral transformation techniques are based on the fact, that
by means of a skilful substitution in integral form one of

the dimensions of the differential equation can be eliminated

and by continuing this procedure the partial differential
equation can be reduced to an ordinary differential equation

or even to a common algebraic equation, which usually will not
yield any difficulties for their solution with help of the

likewise transformed boundary values.

The in this way obtained solution must undergo a reverse or some
reverse transformations in order to obtain the desired solution

of the problem.

Laplace transformation

The Laplace transformation generally is used to e¢liminate the

time variable; so it is most frequently appliced to non-steady

problems. The following cxample will show us the procedurc.
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Consider a confined agiifoer of tnickness D, infinitely extended

in y-direction and semi-infinitely in x-direction (o < x < o)

while the aquifer at x=o0 stands in open connection with an infinite,
fully penetrating canal.

By means of a sudden lowering of the canal level, which further

is keptconct nt o drawdown of the piezometric head, dependant

of time and place, is introduced. The initial drawdown is assumed

to be zmero.

The problem is non-steady geographically one-dimensional

(only x-coordinate).
The drawcdown ¢ must be determined

as a Tunction of x and t:
= H Y1 0 = ¢ (x,%).
= / / A The beoundary value problem becomes.
CEN L - L . .., "‘ -g-ngi = j—-— -(—J-Q-l
7f.D‘fkf‘:'jﬁSl.‘\ﬂ ‘ ax? KD 0t
T o(xy0)=0 + o(oyt)=i , o (=4)=o0

in which K and S rcprescnt de permeability- and the storage coefficient
of the aquifer respectivily.

&% and

Now the unknown function ¢ (x,t) is multiplied by the factor e
integratcd with rcspect to t from zero to infinity, thus obtaining o

new tunction, independant of t:

L-{:(x,t)i =4 e Y, ulxt)dt = 9(x,s8) (s an arbitrary positive valuc)
J J

- . .- o, . N o .
This operation on the function ¢{x,t) is cnlled the Laplocce transform—

ation of @(x,t) and the new function is called the Laplace transform,
/

which will usually be indicoted by L SQ% or by means of a bar:
L

v (x,8) or shortly .

The same operation applying to the differential equation, gives:

o) s i_' - [Sre) 10
: ? I , ' | ¢
{co{ _ { du st oo -eto b st \ sty
I.{Cﬁ.}- j =t - ¢ dt = je dg = ipu j K d(e 77) =
L o 0 o o
e o]
st / -~
~ g(x,0) + 5 \e a(x,t)dt = sgp - ¢(x,0)
. dgm } 0“9 —st . 02 /‘ ~st . d2;
amd L =) = = C dt = =5 (e at = -5
dx 5 dx© ox° o dx
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The transformed differentianl equation hecomes:

2«
Q—% = 52 s¢ - 325(x,o) and as ¢{x,0) = o (initial value):
dx 5
o G 4 - o 2 8
--'-dxz - B sy =0 with B = O

This differential equation is an ordinary onc, with only one
variable x and the device of the trancformation is obvious:

to eliminate the differential quotient %% and to reduce it to
the transformed function ¢ . A further advantage of the transfor-

mation is that the initial value at the same time is incorporated.

Now the two remaining boundary values still have to be

transformed:

[ose) o0
3 O”ys) = 0 and § (O'S) = »QHOQ“Stdt = { - % e"st 0= g

The transformed boundary value problém thus becomes:

2~
d 2 . < A - H
=%-8"s0=0 , J(ws)=0 %‘J(va?»):'s*:]
Lo . . H —gxis A
with the transformed soiution: §(x,s) = S e i

I'rom tables of Laplace transforms the reverse transform can be

found as:

v . 3x pis 35 o wrs s .
o(x,t) = i erfc (é——) = H erfe (5 i?ﬁﬂ and this is the desired exact
2Vt o
solution, in which erfc(z) = complementary error function =
6 2
~7 < 5 -—A ; v 3 B o - .
- erf{z) =1 = - j‘e dA  and indecd, the Loplace transform of
this solution: ° '
<0
; ~st X
h[ e erfc (-ﬁ:‘—) dte
o 2Vt
- H =px\s
can be evaluated to -c '

anzlog~ problems with vorying water table in the cznal and cven
variation according to an arvitrary function of the time ¥ {t) cin
be solved easily by means of vhe Laglace transformation technique.
Besides this, numerous other examples coula have been given, but from
this simple example the importance of the Laplace transformrtion

method for solution of non-steady problems will have become clear.
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b.2.Hankel transformations

The Hankel transformations can be divided into finite and
infinite Hankel transformations. Both transformations are

applied to axial symmetric problems, that is in all problems where
the independant variablerplays a rolc,

By the infinite Hankel transformation the operation is understood

in which the unknown function ¢ (r) is multiplied by the factor
rJ (ar) and the product is integrated with respect to r from
zero to infinity, thus obtaining a new function, denoted as

@(r)] or as ¢(a), independant of r:

$(a)= r o(r) I, (ar) ar
(o}
in which Jo(ar) is the Besselfunction of the first kind and of zero
order and a has an arbitrary positive value,

. 1 —cr
For instance the transform of f(r) = T e becomes:

[ore]

oo

N\ — -

f(a) =j-}; e, Jo(ar)dr = j\e or Jo(ar)dr = !
o

0 ‘a2+02
(Laplace integral)
The main property from which the infinite Hankel transformation

derives its vaolue for solving axial symmetric problems is, that it

reduces the terms

2 N
Q_% + 1 33, which always occur in the differential cquations of those
dr

problems, to the transformed function itself, as can be shown as

follows:

[nce] [ore)

(6% 14 ( a g_q_»_\’

cea 5o L ag - S -
J (dr2 togh) v I (ardar = Vs (n ar)} r J_(ar)ar
At

( : o [ a0 |

GYy 2 &g _ R -

\g Jo(ar) a (r = Jo(ar) il r=5d iJo(ar)



I

o

°
d A
Jo{ar) T a% + a % r J1(ur) do = Jo(ar) r 5% + ar J1(ar) .9

Yo

[>24] ) o

3 1{ { 4o 2
-« ‘ @ d{va1(ar){ =T Jo(ar) o *or J1(ar) 9 - a gw r Jo(ar) dr =

Jo ' § “g
[ ‘ d¢ 1 5w in which J1(ar)=Besselfunction

: NIV

|7 I lar) gr+ar Jylar) o) - 0”9 (a)y of the first kind end first
L Jo order,

So, if the function ¢(r) satisfies the condition that both 9 and %%

vanishes for r = oo we obtain:

v 2 }
i d o _]_d' 1 do _ 2 ~

H { —5 -+ 3 E%\(— lim (r E?) a9 (a)
i‘dr J r-—>o

Hence,application of the infinite Hankel transformation is possible

for an axial symmetric problem for which the horizontal velocity =2t

r = o ig given and the potential drawdown or elevation and the ground-

water velocity at infinity can be assumed zero.

From the theory of Bessel functiong it is known that an arbitrary
function f(r) under certain conditions can be represented by the

Hankelintegral, as follows:
eo

f(r) = f a Ala) Jo(ra} da  in which
Yo

o
Ala) = ( r f(r) Jo(ar) dr
~o
As Ala) is the Hankel transform of f(r) or A(a) = f(a) the invers:
Hankel transformation turns out to be very simple:

o0

o(r) = [ 5 G(a) 7,(ra) aa



As an example coneider infiltration with a constant velocity g from a
circular pond into an assumed infinitely thick aquifer, which will

yleld a steady curved phreatic surface.

/\ new water table

—_———— 1—-—? T T 7 original water table

F4

For simplification the water table aquifer may bc approximated to a
confined aquifer in such a woy that the original horizontal water table
coincides with the bottom of the impermeable layer that covers the
aquifer, while water supply takes place at the rate g per unit time per
unit area over a circular disc. The boundary conditions of the curved
unknown phreatic surface arc thus reduced 1o boundary conditions in a
fixed plane. Now the clevation ¢ of the original piemometric head has

to be dctermined as a function of r and z: ¢ = ¢(r,z).




The boundary value problem can be translated mathematically as

follows:
2 2
9—24..19&21.9_.(‘2.:0
2 r Or 2
dr dz
(co2) =0 X (0,z) = o
@ ] or )
d
@ (r,“ﬂ = cC 5% (r,o) = - % for o < r <R
= o forr >R

Hankel tronsformation with respect to r of the discontinuous boundary

condition for z = o yields:

R

IEACRERACOE RS SERACORE

o] 0

'S%‘ (av°> =

- %% J1 (aR) whereuponlthe transformed boundary value problem becomes;

d o 2’\ o~ d'k I{
""% -a§ =0, ¢ (g =0 |, 5’% (ag0) = - %&' Ja{ (aR)
oz

The solution of this ordinary differential equation is:

5 (a,2) = 9-?—2- 7, (aR)e™?
Ka

Inverse infinite Hankcl transformation gives the desired solution:
je)

R {

9(r,z) = = !

K |
~0

1 / -~2Z%
=7, {Ra) J, (ra)e da.

which expression can be evaluated in infinite series and thus
cnlcoulated for every value of r and z. Along the coordinate

axes the integral function reduces to transcendental functions,
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for examplc along the z-—axc:

' 1 -7 ' 2 2
q.)(’),z) = % (; J1(Ra)€ ¢ da = % ( R+ 27 - z)
° (Laplace integral)
and along the r-as:
cQ
gR ,/‘
9(ry0) = = ‘j 1 J, (Ra) Jo(ra) da (Weber-Schaftheitlin integral)
2ar 2
=== E (= 2) for r <R and

R

.ﬂ...(...._._.lK(._.

2
K =g ( 2) for R > r

in which K(z) and E(z) represent complete elliptic integrzls of the

first and second kinds respectively.

From the theory of Bessel functions it is known that under certzin
conditions an arbitrary function can be represented by 2 so called

Fourier-Bessel series:

a, X a,x A%
f(x) = ; O J ("'"". ) = 1JO (""5"") + C2JO ("'_:':"') + seesee ad inf,
n=1
a
2 {‘ tnx
N - NI (¢ —
with ¢ ey ) \ xf({ )Jo ( Py ) dx
R Jo

and in which a_ (n=1,2 ...) nrc the roots of the equation Jo(a) =0
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Now we can consider the intcgral in this expression as an operction
performed on the fuaction r'(x) and we call this operation the finite

Hankel transformation :for instance:

R
o fwr)?r fmm 5 () ar =6 ()
.

~ 0

Then we immediately can deotermine the inverse transform:

2

C_ = =gt ¢ (n) and so:
n 2. 2
R7J, (an)
ar
o J (-——-)
o' R
o X -
9(r) = = 9 (n) = .
R L Iy (ay)

r 2
H -eéfi + X Qi) ) o(R) - lim (PQQ - i£~ 5 (n)
n i 2 r dr'j dr 2 ¢
kdr r—0 R

Hence, application of the finitc Hankcl transformation is uscful

in axinl symmetric problems with given horizontal velocity at r = o

and given potential distribution at a fixed distance from the centre.

Ffor example, calculate the unsteady drawdown distribution caused by
abstracting a discharge Q from a fully penetrating well at the

centre of a circular island. The aquifer is assumed to be confined.



Q
’ e ——————
i |
1 LIERGE // S
I l ....... . :'-_.:"A.-‘ "-t' :.‘:"‘.
ilﬁ{ff}QSFffﬂzﬁlﬁIDA:
] RSO [
; RSN 5
THTTTITITTTTT Ty
9 = C;)(I‘,'t)
2
g9, 1% _ 42% (g% = =)
2 r or dt kD
dr
9(ry0) = o 9(Ryt) = o
lim (r dr) = - 3= for t >o
ro
Finite Hankel transformation withrespect to r gives:
o 2 j
S _ns_g2% 5 -
ik T Tz TP § (o) =0,

an ordinary differential equation with sclution:

2 7 a 2t )
S(nyt) = s 01 - o (- =)
' onkD * 2 ¢ 2.2/ [
ar K. BR
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The reverse Hankel transformation yields immediately:

ar
o5 J (--—-— 2
o] R a_ 't
n
o(rit) s 2.2 (1 - (- =)
Q J1 (a ) ‘\ 2R
pve n n
ar
< o CE
As 5> is the Fourier-Bessel representation on the
ﬁ;T &y J1 (an) interval a £ r £ R of the function: % in %
we get:
o0 & 2
J (= a_” KDt
R Q i o " R n
o(ryt) = 545 10 2 - 55 2 oxp (= ——5—)
zﬁ~ aJ, (an) RS

If t+ tends to infinity the series vanishes and the well known solution

for the steady state is obtained:
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be3. Fourier transformutions

The Fourier tranaformations can be divided into
1e infinite sinc transformation

2e infinite cosine transformation

3e finite sine transformation

e finite cosine transformation

These transformations are useful in solving problems which are

not axial symmetric as they all eliminate the second differential

quotient of a variable f,i. dzm or d2
2 2"
dx dz

The operations necessary for these transformations are similar
to those of the Hankel transforms and it will suffice to refer
to the survey of integral transformations at the end of this

paper.

In the preceding only a few examples of exact solutions for

two or three~dimensional steady or non-steady problems have
been given, but there are numerous problems that can be solved
by means of integral transformation methods. However, most of
them are not mentioned in geohydrological literature.

This is amazing, especially if one realizes that in a branch

of science where problems are very similar to those in geohydro-
logy, namely the conduction of heat in solids,multiple solutions

for the most different problems are being given.

Mzy be the reason for this must be found in a lack of the
mathematical instruments which geohydrologists have at their
disposal?

If such is the case, this paper may form a small contribution
to a better understanding of the possibilities of solvirg nore

complicate groundwater problems analytically.




-} G

Survey of integral transformation:s.

Inverse transiorm.

Transformation Main property
Laplacc L (cp(t)} = ¢(s) L ‘S 9.%. }= &g - 9(0) 2. by means of
. i © operations and from
I’y —st tabels
= f@(t)e Tt b. by integration in
o) the complex plcne
) 3 - (Uzc ~1 ,(\, 2
Fourier sn{cp(x)g, = 3(n) SRS Sp ¥ = o(x)
A. Finito P jox” o
. . {@ . nnx nn 2\, nmn ,{ n ) 2 N~ .. nnx
'+ sine = e(x)sin == de | (BR) G+ E2) 9(0)=(-1)(a)y | =2 ) ¢ (n)sin =5
Jo e €. & .J Lo L
n=1
{ R fd2g\ 1 )
2. ccainc C )go(x)‘{= o(n) c_J - c. T g(n)y = olx) =
—————— n 3 n deg_{ n ):( ¢ |
a . 2 — E
oy 7\ e dg, O Lo 2 % cos IBX
| = Joln)oos BE az | =(F) ¥ (-1)5xa)- GHo) |3 oy 3 ) Goos
; c n::']
+
-~ 2, Y
B. Infinite!S {({)(X)} = o(a) S j?..%kn s~ J Q(a)}= 9(x)
1. sine ' Lox ) L,
6a - a2 7 + aglo) »
o . 2 - . .
1; E o(x)-in(ax)ax with e = ;{q\gofﬁ(a) sin (xz)da
Lo (p(oo) = dx(co} = G
14 f >
cine 1 oS ot 2 50a) = \d(:)I a4 la D
2. cosine | C~. x?(-.)§ = o(a) = C’f"—‘gi' = c 1 D)y = O(“)
L }
Dgx© U SR
r - o® % - §2(0) L
J g(x)cos(ax)dx with 5 =5 i 9(a)cos(xa)da
: ) = L2 (=) = o Jo
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Transformation Main property Inverse ¢ransform.
2 )
Ho 1 dog . 1 o -1
Hankel H L?(:c)} = §(n) H \{“"% T ‘gf:({ - H .(&‘;(n) = ¢(r)
A. Finite L \or J L
f'R ar ‘é— J (f.’f.
T : . o 2 A o' R
bro(r) J_ (=) dr a_ J,(a )o(R)= lim r S | = (1) ———
»;0 e} R n 1''n T -0 dr 325 Je(a)
> n=1 1 n
with a the roots of - f_r_l_ 3(1_1)
3, (a) = o ®
N { 4% : |
B. Infinite |H Jo(r)" = 8(a) Hﬁ-d—-'e- + 1 g - gt aa(aﬂ = ¢(r)
e ] w2 T er )
v Lor
-~ o 2 8
= frcp(r) Jo(ar)dr -~ limr B% - ag = ‘& a Jo(ra)da
T30 o)
o
with
9 (=) = S (=) = o
dr
|






