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ABSTRACT 

Equations were derived for determination of the travel time of grounwater for some 
hydrologic conditions: Horizontal and radial-symmetric flow in a confined aquifer to a 
well in the centre of a circular island; Flow to a fully penetrating and to a partially 
penetrating channel through uniform recharge from the surface; Radial flow through 
precipitation on a circular island; Horizontal and radial-symmetric flow to a well in an 
infinite leaky aquifer with a constant phreatic head; Horizontal and parallel flow in an 
infinite leaky aquifer with a straight recharge boundary, 

INTRODUCTION 

Recently interest in the residence time of groundwater is rising due to the increasing 
risk for ground water pollution. Especially information is wanted about the time required 
for polluted groundwater to reach an area of discharge like a river or pumping plant. For 
instance in catchments for drinking water supply, the travel time of a water particle be­
tween a given location of recharge and the extraction point will determine the required 
protection measures against pollution in different zones around the pumping plant. 

In this paper several analytical calculation methods for the determination of the residence 
time of ground water for different hydrologic conditions are represented. The equations 
for the hydraulic head distribution are known from the literature. Although the travel 
time of ground water can easily be derived from these relations, solutions of these problems 
are hardly found in literature. 

Direct measurements of flow velocities by tracers are in porous media only applicable 
for short distance because of the low flow velocities. In inhomogeneous conditions with 
permeability produced by fractures in consolidated and igneous rocks, analytical 
solutions will in general fail. Specially in lime stones with wide solution openings and 
high flow velocities tracers are widely applicable (e.g. ZOt!, 1974). Of special interest are 
those investigations with tritium. Groundwater which originates from precipitation since 
1952 shows a high tritium content, due to the testing of nuclear div,ic'es. Tritium has been 
widely used in both tracing and dating of ground water (e.g. Libby, 1961). 

In case of transport of dissolved material a reduction of the concentration gradient 
occurs analogous to molecular diffusion. This phenomenon is due to molecular diffusion 
as well as dispersion through the complicated flow pattern of ground water in the micros­
copic pore spaces. Moreover processes like solution, precipitation and base-exchange can 
occur. The following considerations refer to the saturated movement of water of constant 
density and viscosity through homogeneous aquifers, where transport greatly dominates 
over diffusion and dispersion. 

GENERAL EQUATIONS 

The flow velocity in each point of an aquifer can be dctermined from the hydraulic 
properties of the subsurface and the hydraulic gradient, with Darcy's law. 
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where: 

V= _ K dh 
n ds 

v =: average flow velocity in the pores of the aquifer; 

K = hydraulic conductivity; 
n 

dh 

ds 

= porosity; 

= hydraulic gradient. 

Replacement of a water particle over a distance ds takes a travel time dt: 

dt = ds 
V 

The average flow velocity V over a distance lls is given by: 

V=_~lIh 
n lis 

And the total travel time 6.t during replacement 6.5 is according to (2) and (3): 

.6.t = _.!l (.6.S)2 
K IIh 

(I) 

(2) 

(3) 

(4) 

Most aquifers are thin with respect to their horizontal extent. Thus the groundwater flow 
lines aTe generally assumed to be horizontal in,an aquifer. In case of a very thick aquifer 
and for a short distance between the locations of recharge and discharge, this condition 
is not satisfied and the bending of the flow lines has to be taken into account. 

According to Hooghoudt (1940), the maximum depth zmax to which a homogeneous 
and anisotropic aquifer contributes to the discharge is given by the relation: 

Zmax =! L (5) 

where L is the distance between the divide and the location of discharge. This implies 
half-circular stream lines. In general, the maximun depth z(x)max of each stream line in 
such an aquifer can be approximated as half the distance L-x. Where x represents the 
distance between the divide and the point of recharge. Thus the length of a flow line is 

given by the relation: 

s = ! 7r (L-x) (6) 

The penetration depth of stream lines in an isotropic aquifer Z I and in an anisotropic 
aquifer z2 with identical geometric properties are related as (Vreedenburgh, 1935): 

Zl:Z2=1:~ 
Kh 

(7) 

where Kv and Kh are the vertical and horizontal conductivities of the anisotropic aquifer. 

Combination of (5) and (7) yields: 
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Z(X)max = i CL-x) !K; 
Yf:h 

• (8) 

In the absence of sufficient data about the hydraulic head pattern or if future situations 
have to be predicted, the travel time can be determined from the boundary conditions. 
In the following approximate solutions will be given for several hydrologic conditions 
with th"ickness b<i L. 

HORIZONTAL AND RADIAL-SYMMETRIC FLOW IN A CONFINED AQUIFER TO A 
WELL IN THE CENTRE OF A CIRCULAR ISLAND 

Fig. 1 shows the model which implies: 
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Fig. 1: Horizontal and radial-symmetric flow in a confined aquifer to a well in the 
centre of a circular isle. 

Q = 2"Kb dh 
o dr 

(10) 

where Qo is the discharge of the well, taken positive, and Kb represents the transmissivity 
of the aquifer {L 2 T-1 ]. 

A combination of (I) and (2) with ds = cif yields: 

dt = - !!. dr dr 
K dh 

substitution of (10) into (11) gives: 

dt = 

Integration with initial condition t "" 0 : r "" R leads to: 

And the total travel time from the boundary to the well: 

total pore vc:lumc 
discharge 

(11 ) 

(12) 

(13) 

( 14) 
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t(t) represents the time required to eX,change the total amount of watcr in the isle. 

The same equations hold for free surface conditions if: hR - h~ hR 

FLOW TO A CHANNEL IN AN AQUIFER THROUGH UNIFORM RECHARGE 

FROM THE SURFACE 

The flow in a semi-confining layer is assumed to be vertical, and that part of the 
confining layer which participates in the saturated flow is assumed to have a constant 
thickness (fig. 2). 

Z{t) 

h b 

, , , , , ' , 
~ 

x= L X(t) xo X=o 

Fig.2 : Radial flow to a drainage channel 

The vertical flow in the semi-pervious layer can analogous to (I) be described by: 

V/:::_~ dh 
n dz 

Substitution of (2) with.1.s::: b' and ft.h = hi yields: 

, 
t' ::::!L 

K' 

(15) 

(16) 

where: K' , 
n 

= 
= 

vertical hydraulic conductivity of the confining layei· [LT-I]~ 
porosity (dimensionless); 

b' = thickness of saturated part of the confining layer [L]; 
h' = head difference between the phreatic surface and the piezo­

metric surface [L]; 
e = travel time through the confining layer (T] 

For uniform recharge N, continuity gives: n'y' = -N 

where N represents the recharge [LT-I]. 
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Combination of (15), (16) and (17) yields: 

thus 

V' = _ b ' 
t, 

'b' t'=~ 
N 

= total volume 
discharge 

(18) 

(19) 

If the thickness of the aquifer is small with respect to the horizontal extent of the flow 
system, the ground water flow can be approximated as horizontal. This type of flow can be 
described by: 

And: 

q = -Kb dh 
dx 

q = Nx 

where q is the ground water discharge per unit width. 

A combination of (20) and (21) gives: 

dh = _Nx 
dx Kb 

From (1) and (2) with ds = dx : 

dt = -.!! dx dx 
K dh 

Substitution of (22) in (23) yields: 

dt = nb dx 
Nx 

Integrating with initial condition t = 0 : x = Xo gives: 

where: 

t(x) = nb In x 
N Xo 

Xo -'=' distance from the divide to the point of infiltration of a 
water particle; 

x = horizontal distance between the divide and the water 
particle considered; 

t(x) = travel time as a function of x. 

(20) 

(21 ) 

(22) 

(23) 

(24) 

(25) 

It is evident that in a vertical section the residence time increases with depth, so that in 
the case of a symmetrical flow pattern for the range Xo to x = }(L + xo ): 

(26) 

7 



w~ere z(t) represents the distance from the impervious base to the water particle at 
time t. 

Substitution of (24) gives the travel time as function of z: 

t(z) = nb 1nl 
N z(t) 

(27) 

Eqs. (25) and (26) yield the travel time of the horizontal flow component. To obtain the 
total travel time in the aquifer, the vertical flow component has to be taken into account. 
Analogous to (19): 

t(z)' = n(b - z(t)) 
N 

Substitution of (26) yields: 

t(z)' = -Nn~ (1-- xo ) 
x(!) 

(28) 

(29) 

The equations hold also for free-surface conditions if the difference in hydraulic head 
between location Xo and x(t) is small with respect to b. In that case t' := O. 

INFLUENCE OF THE RADIAL FLOW NEAR A DRAINAGE CHANNEL 

The consideration in this paragraph have beM derived from an unpublished report by 
Ernst (1973); The solutions in the foregoing section refer to horizontal flow. Therefore 
they do not hold for the area between x:= L and x =L-b, where radial flow predominates 
through the upward bending of the flow lines. 

Analogous to (13) the radial flow can be approximated by (fig. I): 

Hr ) -- t(r):= 11"11 (1"2 --r 2) 
o NL 0 

where Qo/b of (13) has been replaced by NL. 

Transformation of r = L-x yields: 

t(x ) - t(x) = nn [( L-x)' -(L-xo)' J 
o NL 

If (L-xo)~L--x), then the second term in (30) can be neglected and for L-b<x<L, 
(30) becomes': 

t(L)- t(x) = nnL (I_X), 
4N L 

(30) 

(31 ) 

(32) 

The influence of the radial flow can be neglected for small value of b/L; that means in 
general for b/L<O.I. 
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RXDIAL FLOW THROUGH PRECIPITATION ON A CIRCULAR ISLAND 

The flow boundary is formed by a drainage channel: fig. 1 shows a radial section of 
this case, witb x :::: rand L:::: R. 

Analogous to (19): t, :::: n~/-

In this case (20) becomes: 

and (21): 
Q=1IT2 N 

where Q is now the discharge from a circular area [L3 T-']. 

Combination of (33) and (34) yields: 

Analogous to (25): 

From (27): 

dh:::: Nr 
dr 2Kb 

t(r):::: 2nb In ~r ~ 
N ro 

t(r) : 2nb 
N 

1n L 
z(t) 

And analogous to (29): 

t(2)' "2nb 0-1:2...) 
N r(t) 

The same equations are valid for an ullconfined aquifer if the difference between the 
hydraulic head between fa and rCt) is small with respect to b. In that case 1':::: O. 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

HORIZONTAL AND RADIAL-SYMMETRIC FLOW TO A WELL IN AN INFINITE LEAKY 
AQUIFER WITH A CONSTANT PHREATIC HEAD 

The model is represented in fig. 3. Assuming vertical flow in the confining layer, the travel 
time for ground water through this layer is analogous to (16): 

'b'2 t(r)' - ---"n~,--
K'(hc-h) 

where he is the constant phreatic head in or above the confing layer. 

(39) 

If the radius of the wen is negligible and hc-h = 0 if r -)0 00, then the head distribution 
in the aquifer satisfies the equation (De Glee, 1930): 

h = h - Qo K (L) 
c 21TKb 0 B 

(40) 

---0-,"- _________ _ 



wh'he: Ko = Modified Bessel function of first kind and zero order; 
B = V KM (leakage factoe) [Ll; 

A = ~: ~:~t:~~~~.ow resistance of the semi-pervious confining 

Fig. 3 Horizontal and radial·symmetric flow to a well in an 
infinite leaky aquifer. 

Substitution of (39) in (40) yields: 

t(r)' == 211"n'?'2 Kb = 211"n~b'B2 
QoK Ko(r/B) Qo)(o(r/B) 

(41 ) 

Replacement of a water particle in the aquifer from a distance r to the well requires a 
time t(r). From (40): 

dll = _ Qo 
([f 211"KbB 

Integration of (11) with (42) yields: 

or: 

riB 
The function f 

o 

10 

t(r) = 211"nb 
Qo 
/~ 
o BK, (riB) 

t(r) = 2.nbB' /,B 
Qo 0 

1 dx 
K, (x) 

dx 
K, (x) 

is given in table I. 

(42) 

(43) 

(44) 
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HORIZONTAL AND RADIAL-SYMMETRIC FLOW TO A WELL IN AN INFINITE 
AQUIFER WITH RECHARGE FROM A PARALLEL SYSTEM OF STREAMS 

The water level in the channels is assumed constant; the model is shown in fig. 4. 

Analogous to (40) Ernst (1971) obtained the following solution: 

• 

b 

where: 

and 

In (46); 

Qo 
h;=: he - 27tkb 

00 

E 2 L) t 
- . --

, 

Fig. 4 Radial-symmetric flow to a well in an infinite leaky 
aquifer with rech~rge from a parallel stream system. 

B" =VKb~ ILl 

'Y = X + 2LQ specific drainage resistance [T] 
2Kb 

L 
n 
n 

= half stream spacing; 
= radial flow resistance [TL -I j; 
=_1_ In 4b' 

1TK' . 'lIT 0 

where fa represents the radius of a half-circular drainage or infiltration channel. 

The average flow velocity from the channels through the confining layer is 
proportional to the head difference between the channels and the aquifer and 
inversily proportional with the radial and vertical flow resistance: 

Hence: 

V' 0= _ hc-h 
2nU1 

t(r)' = 2nb'Ln 
he h 

Substitution of (45) in (48) gives: 

(45) 

(46) 

(47) 

(48) 

(49) 
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Analogous to (44): .' t(r) = 21TnbB 
Qo 

The integral function is given in table 1. 

riB ['IB_1 _ dx 
o K, (x) 

0.001 0.00000 
0.004 0.00001 

0.006 0.00002 
0.008 0.00003 
0.01 0.00005 
0.02 0.00020 
0.04 0.00080 
0.06 0.00181 
0.08 0.00322 
0.10 0.00504 
0.2 0.021 
0.4 0.086 

riB 

0.6 

0.8 
1.0 

1.2 
1.4 

1.6 
1.8 
2.0 
2.5 

3.0 
3.5 
4.0 
5.0 

Table 1. Some values of the integral functions in Eqs. (44) and (50) 

The same equations with A = 0 hold for free-surface conditions. 

(50) 

fiB 1 dx 
0 K, (x) 

0.208 

0.399 
0.679 

1.073 
1.611 

2.334 
3.292 
4.548 
9.565 

18.904 
35.902 
66.358 

215.03 

HORIZONTAL AND PARALLEL FLOW IN AN INFINITE LEAKY AQUIFER WITH 
A STRAIGHT FLOW BOUNDARY 

The phreatic surface in or upon the confining layer is assumed to be constant; the 
flow boundary represents an open water surface (fig. 5). This model is applicable to 
seepage underneath a dike into a low polder. 

12 
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Fig. 5 Diffuse upward seepage in a polder through recharge along 
a straight boundary. 
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Flbw in the aquifer: 

For continuity: 

q = _ Kb dh 
dx 

dq::: _ h-hc 
dx ~ 

A combination of (51) and (52) gives: 

Integration with boundary conditions h::: ho : x ::: 0 

h:::hc:x~O<I 

yields: 

where: B = J KM 

Analogous to (16): 

h-h = (h -h ) e -x/B e 0 C 

'b" t(x)' - -ci;n,;"-,,, 
R'(h he) 

Substitution of (54) leads to: 

From (l) and (2): 

From (54): 

t(x) ::: - !! dx dx 
Kdh 

(h -h )e-x /B 
dh ::: _ 0 c 
dx B 

Substitution of (57) in (58) yields: 

B x/B t(x) ::: n e dx 
K (ho-he) 

(51 ) 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

Integration with boundaries Xo and x gives the time t(x) that is required to flow from 
xotox: 

(60) 

or: 
(61 ) 
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• EXAMPLES 

To give an example of ground water flow velocities determined by tracers, 
observations in the dune catchment of the drinking water supply of Amsterdam and 
observations near Hilversum in an ice-pushed ridge are presented. 

In the dune catchment artificial replenishment by water from the River Rhine is in­
duced. River water is infiltrated by shallow infiltration channels and withdrawn as 
groundwater through a system of drainage tubes parallel to the channels (fig. 6), An in-

m , 

,/' ". !; 

-' ". 5 

"'-<;;~~ge hYdraulic 
head d;.tribu\;on 

o 
, 
, 

Fig. 6. Part of the infiltration system in the coastal dune 
catchment of the drinking water supply of Amsterdam 

crease of the chloride content of the river water is observed in the drainage water with 
a time lag of about 2 months. 

The upper part of the aquifer consists of dune and beach sand with an hydraulic 
conductivity K of about I Om/day, and a porosity n of 35%. The average distance 
.6.s between the infiltration channels and the drainage tubes amounts 70 m and the 
average hydraulic gradient I : 35. Substitution of these values in equation (4) yields 
an average travel time T = 85 days. The minimum travel time can be shorter in case of 
occurrence of layers of coarser material with higher conductivity and smaller 
porosity. 

The influence of the inhomogeneity of the subsurface on the flow distribution 
in this area has been investigated by Engelen and Roebert (l974) by using the 
chemical constituents of the infiltrating water as tracers. 

Near Hilversum a sewage infiltration plant has been operated for more than 50 years 
in a high leveled recharge area. The extension of the cloud of polluted ground water 
has been traced by its higher chloride content in a great number of observation wells. 
The average hydraulic gradient shows a value of I : 1200. The aquifer consists of 
coarse fluvial sand with a conductivity of about 35 m/day and a porosity of 35%. The 
average advance of the front of the polluted water mass appears to be about 25 m/year. 
This value agrees rather well with equation (1). 
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